This page attempts to provide a way for users experienced in Node.js to learn Raku. Features shared between the two languages will be explained here, as well as major differences in syntax and features.
This is not a tutorial for learning Raku; this is a reference for users who are already at an intermediate to advanced skill level with Node.js.
Basic syntax§
"Hello, world!"§
Let's start with the typical first program when learning new languages. In Node.js, a hello world program would be written like this:
console.log('Hello, world!');
Here are a couple ways to write this in the same way in Raku:
say('Hello, world!'); say 'Hello, world!';
Parentheses are optional for function calls in Raku. While semicolons are, for the most part, optional in Node.js, they are mandatory for expressions in Raku.
Now that we've greeted the world, let's greet our good friend, Joe. We'll start with Node.js again:
let name = 'Joe'; console.log('What\'s up,' + name + '?'); console.log(`What's up, ${name}?`); console.log("What's up, ", name, "?");
Since he didn't hear us, let's greet him again, this time in Raku:
my $name = 'Joe'; say 'What\'s up, ' ~ $name ~ '?'; say "What's up, $name?"; say "What's up, ", $name, "?";
Here, there are only a couple differences: most variables in Raku have what are called sigils, which are what the $
in front of its name is, and string concatenation uses the ~
operator instead of +
. What the two languages share in common here is support for string interpolation.
Now that the basic examples are out of the way, let's explain the similarities between the two languages in greater detail.
Variables§
Variables in Node.js can be defined like this;
var foo = 1; // Lexically scoped with functions and modules let foo = 1; // Lexically scoped with blocks const foo = 1; // Lexically scoped with blocks; constant // No equivalent to Raku dynamic variables exists. global.foo = 1; // Globally scoped foo = 1; // Ditto, but implicit; forbidden in strict mode
In Raku there is no equivalent to var
. An important note to make is that there is no variable hoisting in Raku; variables are defined and assigned at the line they're on, not defined at the top of its scope and later assigned at that line.
In addition to regular variables, in Raku there are what is known as dynamic variables. Dynamic variables are looked up using the caller's scope, rather than the outer scope. This is what the equivalent variable declarations look like in Raku:
my $foo = 1; # Lexically scoped our $foo = 1; # Package scoped
my constant foo = 1; # Lexically scoped; constant
constant foo = 1; # Package scoped; constant
my $*foo = 1; # Dynamic variable; lexically scoped our $*foo = 1; # Dynamic variable; package scoped
GLOBAL::<$foo> := 1; # Globally scoped
Use my
where you'd use let
, our
for variables you'd define in the outermost scope needed, and constant
where you'd use const
.
You may have noticed the $
and $*
symbols placed before variable names. These are known as sigils and twigils respectively, and define what container the variable has. Refer to the documentation on variables for more information on sigils, twigils, and containers.
Variables in Node.js can have the same name as others from outer scopes without conflicting (though linters will usually complain about it depending on how they're configured):
let foo = 1; function logDupe() { let foo = 2; console.log(foo); } logDupe(); // OUTPUT: 2 console.log(foo); // OUTPUT: 1
Raku also allows this:
my $foo = 1; sub log-dupe { my $foo = 2; say $foo; } log-dupe; # OUTPUT: 2 say $foo; # OUTPUT: 1
Operators§
Assignment§
The =
operator works the same across both languages.
The :=
operator in Raku binds a value to a variable. Binding a variable to another variable gives them the same value and container, meaning mutating attributes of one will mutate the other's as well. Bound variables cannot be reassigned with =
or mutated with ++
, --
, etc. but they can be bound to another value again:
my %map; # This is a hash, roughly equivalent to a JS object or map my %unbound = %map; my %bound := %map; %map<foo> = 'bar'; say %unbound; # OUTPUT: {} say %bound; # OUTPUT: {foo => bar} %bound := %unbound; say %bound; # OUTPUT: {}
Equality§
Node.js has two equality operators: ==
and ===
.
==
is the loose equality operator. When comparing operands with the same type, it will return true if both operands are equal. However, if the operands are different types, they are both cast to their primitives before being compared, meaning these will return true:
console.log(1 == 1); // OUTPUT: true console.log('1' == 1); // OUTPUT: true console.log([] == 0); // OUTPUT: true
Similarly, in Raku, both operands are cast to Numeric before comparison if they don't share the same type:
say 1 == 1; # OUTPUT: True say '1' == 1; # OUTPUT: True say [1,2,3] == 3; # OUTPUT: True, since the array has three elements
The inverse of ==
is !=
.
Raku has another operator similar to ==
: eq
. Instead of casting operands to Numeric if they're different types, eq
will cast them to strings:
say '1' eq '1'; # OUTPUT: True say 1 eq '1'; # OUTPUT: True
The inverse of eq
is ne
or !eq
.
===
is the strict equality operator. This returns true if both operands are the same value. When comparing objects, this will only return true if they are the exact same object:
console.log(1 === 1); // OUTPUT: true console.log('1' === 1); // OUTPUT: false console.log({} === {}); // OUTPUT: false let obj = {}; let obj2 = obj; console.log(obj === obj2); // OUTPUT: true;
In Raku, the operator behaves the same, with one exception: two objects that have the same value, but different containers, will return false:
say 1 === 1; # OUTPUT: «True» say '1' === 1; # OUTPUT: «False» say 'ayy lmao' === 'ayy lmao'; # OUTPUT: «True» say {} === {}; # OUTPUT: «False» my \hash = {}; my %hash = hash; say hash === %hash; # OUTPUT: False
In the last case it's the same object, but containers are different, which is why it returns False.
The inverse of ===
is !==
.
This is where Raku's other equality operators are useful. If the values have different containers, the eqv
operator can be used. This operator can be also be used to check for deep equality, which you would normally need to use a library for in Node.js:
say {a => 1} eqv {a => 1}; # OUTPUT: True my \hash = {}; my %hash := hash; say hash eqv %hash; # OUTPUT: True
In the case you need to check if two variables have the same container and value, use the =:=
operator.
my @arr = [1,2,3]; my @arr2 := @arr; # Bound variables keep the container of the other variable say @arr =:= @arr2; # OUTPUT: True
Smartmatching§
Raku has one last operator for comparing values, but it is not exactly an equality operator. This is ~~
, the smartmatch operator. This has several uses: it can be used like instanceof
in Node.js, to match a regex, and to check if a value is a key in a hash, bag, set, or map:
say 'ayy lmao' ~~ Str; # OUTPUT: True my %hash = a => 1; say 'a' ~~ %hash; # OUTPUT: True my $str = 'abc'; $str ~~ s/abc/def/; # Mutates $str, like foo.replace('abc', 'def') say $str; # OUTPUT: def
While we are talking about instanceof
, the equivalent to the constructor
property on Node.js objects in Raku is the WHAT
attribute:
console.log('foo'.constructor); // OUTPUT: String
say 'foo'.WHAT; # OUTPUT: Str
Numeric§
Node.js has +
, -
, /
, *
, %
, and (in ES6) **
as numeric operators. When the operands are different types, similarly to the equality operators, are cast to their primitives before following through with the operation, making this possible:
console.log(1 + 2); // OUTPUT: 3 console.log([] + {}); // OUTPUT: [object Object] console.log({} + []); // OUTPUT: 0
In Raku, again, they are converted to a Numeric type, as before:
say 1 + 2; # OUTPUT: 3 say [] + {}; # OUTPUT: 0 say {} + [1,2,3]; # OUTPUT: 3
In addition, Raku has div
and %%
. div
behaves like int
division in C, while %%
checks if one number is cleanly divisible by another or not:
say 4 div 3; # OUTPUT: 1 say 4 %% 3; # OUTPUT: False say 6 %% 3; # OUTPUT: True
Bitwise§
Node.js has &
, |
, ^
, ~
, <<
, >>
, >>>
, and ~
for bitwise operators:
console.log(1 << 1); // OUTPUT: 2 console.log(1 >> 1); // OUTPUT: 0 console.log(1 >>> 1); // OUTPUT: 0 console.log(1 & 1); // OUTPUT: 1 console.log(0 | 1); // OUTPUT: 1 console.log(1 ^ 1); // OUTPUT: 0 console.log(~1); // OUTPUT: -2
In Raku, there is no equivalent to >>>
. All bitwise operators are prefixed with +
, however bitwise negation uses +^
instead of ~
:
say 1 +< 1; # OUTPUT: 2 say 1 +> 1; # OUTPUT: 0 # No equivalent for >>> say 1 +& 1; # OUTPUT: 1 say 0 +| 1; # OUTPUT: 1 say 1 +^ 1; # OUTPUT: 0 say +^1; # OUTPUT: -2
Checking for definedness§
Javascript includes a nullish coalescing operator, ??
, which progresses only if null or undefined:
undefined || null || 0 || 1 ; // => 1 undefined ?? null ?? 0 ?? 1 ; // => 0
This is very similar to Raku //
operator:
Any || Nil || 0 || 1 ; # => 1 Any // Nil // 0 // 1 ; # => 0
Custom operators and operator overloading§
Node.js does not allow operator overloading without having to use a Makefile or build Node.js with a custom version of V8. Raku allows custom operators and operator overloading natively! Since all operators are subroutines, you can define your own like so:
# "distance operator": the distance of two numbers is the absolute value # of their difference multi infix:<|-|>($a, $b) is equiv(&infix:<->) { abs $a - $b } say -1 |-| 3; # OUTPUT: 4
Operators can be defined as prefix
, infix
, or postfix
. The is tighter
, is equiv
, and is looser
traits optionally define the operator's precedence. In this case, |-|
has the same precedence as -
.
Note how multi
is used when declaring the operator subroutines. This allows multiple subroutines with the same name to be declared while also having different signatures. This will be explained in greater detail in the Functions section. For now, all we need to know is that it allows us to override any native operator we want:
# Using the `is default` trait here forces this subroutine to be chosen first, # so long as the signature of the subroutine matches. multi prefix:<++>($a) is default { $a - 1 } my $foo = 1; say ++$foo; # OUTPUT: 0
Control flow§
if/else§
You should be familiar with how if
/else
looks in JavaScript:
let diceRoll = Math.ceil(Math.random() * 6) + Math.ceil(Math.random() * 6); if (diceRoll === 2) { console.log('Snake eyes!'); } else if (diceRoll === 12) { console.log('Boxcars!'); } else { console.log(`Rolled ${diceRoll}.`); }
In Raku, if
/else
works largely the same, with a few key differences. One, parentheses are not required. Two, else if
is written as elsif
. Three, the if clause may be written after a statement:
my Int $dice-roll = ceiling rand * 6 + ceiling rand * 6; if $dice-roll == 2 { say 'Snake eyes!'; } elsif $dice-roll == 12 { say 'Boxcars!'; } else { say "Rolled $dice-roll."; }
Alternatively, though less efficient, this could be written to use if
after statements:
my Int $dice-roll = ceiling rand * 6 + ceiling rand * 6; say 'Snake eyes!' if $dice-roll == 2; say 'Boxcars!' if $dice-roll == 12; say "Rolled $dice-roll." if $dice-roll != 2 && $dice-roll != 12;
Raku also has when
, which is like if
, but if the condition given is true, no code past the when
block within the block it's in is executed:
{ when True { say 'In when block!'; # OUTPUT: In when block! } say 'This will never be output!'; }
Additionally, Raku has with
, orwith
, and without
, which are like if
, else if
, and else
respectively, but instead of checking whether their condition is true, they check if it's defined.
switch§
Switch statements are a way of checking for equality between a given value and a list of values and run some code if one matches. case
statements define each value to compare to. default
, if included, acts as a fallback for when the given value matches no cases. After matching a case, break
is typically used to prevent the code from the cases that follow the one matched from being executed, though rarely this is intentionally omitted.
const ranklist = [2, 3, 4, 5, 6, 7, 8, 9, 'Jack', 'Queen', 'King', 'Ace']; const ranks = Array.from(Array(3), () => ranklist[Math.floor(Math.random() * ranks.length)]); let score = 0; for (let rank of ranks) { switch (rank) { case 'Jack': case 'Queen': case 'King': score += 10; break; case 'Ace'; score += (score <= 11) ? 10 : 1; break; default: score += rank; break; } }
In Raku, given
can be used like switch statements. There is no equivalent to break
since when
blocks are most commonly used like case
statements. One major difference between switch
and given
is that a value passed to a switch
statement will only match cases that are exactly equal to the value; given
values are smartmatched (~~
) against the when
values.
my @ranklist = [2, 3, 4, 5, 6, 7, 8, 9, 'Jack', 'Queen', 'King', 'Ace']; my @ranks = @ranklist.pick: 3; my Int $score = 0; for @ranks -> $rank { # The when blocks implicitly return the last statement they contain. $score += do given $rank { when 'Jack' | 'Queen' | 'King' { 10 } when 'Ace' { $score <= 11 ?? 10 !! 1 } default { $_ } }; }
If there are multiple when
blocks that match the value passed to given
and you wish to run more than one of them, use proceed
. succeed
may be used to exit both the when
block it's in and the given block, preventing any following statements from being executed:
given Int { when Int { say 'Int is Int'; proceed } when Numeric { say 'Int is Numeric'; proceed } when Any { say 'Int is Any'; succeed } when Mu { say 'Int is Mu' } # Won't output } # OUTPUT: # Int is Int # Int is Numeric # Int is Any
for, while, and do/while§
There are three different types of for loops in JavaScript:
// C-style for loops const letters = {}; for (let ord = 0x61; ord <= 0x7A; ord++) { let letter = String.fromCharCode(ord); letters[letter] = letter.toUpperCase(); } // for..in loops (typically used on objects) for (let letter in letters) { console.log(letters[letter]); } # OUTPUT: # A # B # C # etc. // for..of loops (typically used on arrays, maps, and sets) for (let letter of Object.values(letters)) { console.log(letter); } # OUTPUT: # A # B # C # etc.
Raku for
loops most closely resemble for..of
loops, since they work on anything as long as it's iterable. C-style loops are possible to write using loop
, but this is discouraged since they're better written as for
loops using ranges. Like if
statements, for
may follow a statement, with the current iteration being accessible using the $_
variable (known as "it"). Methods on $_
may be called without specifying the variable:
my Str %letters{Str}; %letters{$_} = .uc for 'a'..'z'; .say for %letters.values; # OUTPUT: # A # B # C # etc.
while
loops work identically between JavaScript and Raku. Raku also has until
loops, where instead of iterating until the given condition is false, they iterate until the condition is true.
do/while
loops are known as repeat/while
loops in Raku. Likewise with while
, repeat/until
loops also exist and loop until the given condition is false.
To write infinite loops in Raku, use loop
rather than for
or while
.
In JavaScript, continue
is used to skip to the next iteration in a loop, and break
is used to exit a loop early:
let primes = new Set(); let i = 2; do { let isPrime = true; for (let prime of primes) { if (i % prime == 0) { isPrime = false; break; } } if (!isPrime) continue; primes.add(i); } while (++i < 20); console.log(primes); # OUTPUT: Set { 2, 3, 5, 7, 11, 13, 17, 19 }
In Raku, these are known as next
and last
respectively. There is also redo
, which repeats the current iteration without evaluating the loop's condition again.
next
/redo
/last
statements may be followed by a label defined before an outer loop to make the statement work on the loop the label refers to, rather than the loop the statement is in:
my %primes is SetHash; my Int $i = 2; OUTSIDE: repeat { next OUTSIDE if $i %% $_ for %primes.keys; %primes{$i}++; } while ++$i < 20; say %primes; # OUTPUT: SetHash(11 13 17 19 2 3 5 7)
do§
do
is not currently a feature in JavaScript, however a proposal has been made to add it to ECMAScript. do
expressions evaluate a block and return the result:
constant VERSION = v2.0.0; constant VERSION_NUMBER = do { my @digits = VERSION.Str.comb(/\d+/); :16(sprintf "%02x%02x%04x", |@digits) }; say VERSION_NUMBER; # OUTPUT: 33554432
Types§
Creating types§
In JavaScript, types are created by making a class (or a constructor in ES5 and earlier). If you've used TypeScript, you can define a type as a subset of other types like so:
type ID = string | number;
In Raku, classes, roles, subsets, and enums are considered types. Creating classes and roles will be discussed in the OOP section of this article. Creating an ID subset can be done like so:
subset ID where Str | Int;
See the documentation on subset and Junction
for more information.
TypeScript enums may have numbers or strings as their values. Defining the values is optional; by default, the value of the first key is 0, the next key, 1, the next, 2, etc. For example, here is an enum that defines directions for extended ASCII arrow symbols (perhaps for a TUI game):
enum Direction ( UP = '↑', DOWN = '↓', LEFT = '←', RIGHT = '→' );
Enums in Raku may have any type as their keys' values. Enum keys (and optionally, values) can be defined by writing enum
, followed by the name of the enum, then the list of keys (and optionally, values), which can be done using < >, « », or ( ). ( )
must be used if you want to define values for the enum's keys. Here is the Direction enum as written in Raku:
enum Direction ( UP => '↑', DOWN => '↓', LEFT => '←', RIGHT => '→' );
See the documentation on enum for more information.
Using types§
In TypeScript, you can define the type of variables. Attempting to assign a value that doesn't match the type of the variable will make the transpiler error out. This is done like so:
enum Name (Phoebe, Daniel, Joe); let name: string = 'Phoebe'; name = Phoebe; # Causes tsc to error out let hobbies: [string] = ['origami', 'playing instruments', 'programming']; let todo: Map<string, boolean> = new Map([ ['clean the bathroom', false], ['walk the dog', true], ['wash the dishes', true] ]); let doJob: (job: string) => boolean = function (job: string): boolean { todo.set(job, true); return true; };
In Raku, variables can be typed by placing the type between the declarator (my
, our
, etc.) and the variable name. Assigning a value that doesn't match the variable's type will throw either a compile-time or runtime error, depending on how the value is evaluated:
enum Name <Phoebe Daniel Joe>; my Str $name = 'Phoebe'; $name = Phoebe; # Throws a compile-time error # The type here defines the type of the elements of the array. my Str @hobbies = ['origami', 'playing instruments', 'programming']; # The type between the declarator and variable defines the type of the values # of the hash. # The type in the curly braces defines the type of the keys of the hash. my Bool %todo{Str} = ( 'clean the bathroom' => False, 'walk the dog' => True, 'wash the dishes' => True ); # The type here defines the return value of the routine. my Bool &do-job = sub (Str $job --> Bool) { %todo{$job} = True; };
Comparing JavaScript and Raku types§
Here is a table of some JavaScript types and their equivalents in Raku:
JavaScript | Raku |
---|---|
Object | Mu, Any, Hash |
Array | List, Array, Seq |
String | Str |
Number | Int, Num, Rat |
Boolean | Bool |
Map | Map, Hash |
Set | Set, SetHash |
Object
is both a superclass of all types in JavaScript and a way to create a hash. In Raku, Mu
is a superclass of all types, though usually you want to use Any
instead, which is a subclass of Mu
but also a superclass of nearly every type, with Junction
being an exception. When using Object
as a hash, Hash
is what you want to use. One key difference between Object
and Hash
is that Object
preserves the order of its keys; Hash
does not by default.
There are three types equivalent to Array
. Array
is most similar to Array
, since it acts as a mutable array. List
is similar to Array
, but is immutable. Seq
is used to create lazy arrays.
String
and Str
are for the most part used identically.
There are several different types in Raku equivalent to Number
, but the three you'll most commonly see are Int
, Num
, and Rat
. Int
represents an integer. Num
represents a floating-point number, making it the most similar to Number
. Rat
represents a fraction of two numbers, and is used when Num
cannot provide precise enough values.
Boolean
and Bool
are for the most part used identically.
Map
has both a mutable and an immutable equivalent in Raku. Map
is the immutable one, and Hash
is the mutable one. Don't get them mixed up! Like Map
in JavaScript, Map
and Hash
can have any type of key or value, not just strings for keys.
Like Map
, Set
also has both a mutable and an immutable equivalent in Raku. Set
is the immutable one, and SetHash
is the mutable one.
Functions§
# TBD
Object-oriented programming§
# TBD
Asynchronous programming§
# TBD
Buffers§
NodeJS handles raw binary data with the classes Buffer
and Blob
, while Raku does so with the roles Buf
and Blob
, which are mutable and immutable buffers respectively. In Raku, a `Buf` composes a `Blob` so all `Blob` methods are available to `Buf` objects.
The following table summarizes the similarities and differences between buffer constructs in NodeJS and Raku:
Class/Role | NodeJS | Raku |
---|---|---|
`Buffer`/`Buf` | Fixed-length sequence of bytes (No methods such as `push`, `pop`, etc.) | Sequence of bytes that can grow or shrink dynamically. You can use methods such as `push`, `pop`, etc. |
Iterable using the `for..of` syntax | It can be iterated over using a looping construct. | |
Each byte can be updated using array indexing, e.g., `buf[i]++`. | Same as NodeJS. | |
`Blob` | Fixed-length sequence of bytes (No methods such as `push`, `pop`, etc.) | Same as NodeJS. |
It's not iterable. | It can be iterated over using a looping construct. | |
Each byte is immutable. | Same as NodeJS. |
Creating buffers§
In NodeJS, there are a few ways to create a new buffer. You can use the static method Buffer.alloc
to allocate a buffer of n
bytes of zero, unless the fill
argument is provided.
const zeroBuf = Buffer.alloc(8); const charBuf = Buffer.alloc(8, 97, 'utf-8'); console.log(zeroBuf); // OUTPUT: «<Buffer 00 00 00 00 00 00 00 00>» console.log(charBuf); // OUTPUT: «<Buffer 61 61 61 61 61 61 61 61>»
In Raku, you can use the allocate
method:
my $zero-blob = Blob.allocate(8); my $char-blob = Blob.allocate(8, 97); say $zero-blob; # OUTPUT: «Blob:0x<00 00 00 00 00 00 00 00>» say $char-blob; # OUTPUT: «Blob:0x<61 61 61 61 61 61 61 61>» my $zero-buf = Buf.allocate(8); my $char-buf = Buf.allocate(8, 97); say $zero-buf; # OUTPUT: «Buf:0x<00 00 00 00 00 00 00 00>» say $char-buf; # OUTPUT: «Buf:0x<61 61 61 61 61 61 61 61>»
You can also initialize a buffer to the contents of an array of integers:
const buf = Buffer.from([ 114, 97, 107, 117 ]); console.log(buf); // OUTPUT: «<Buffer 72 61 6b 75>»
In Raku, you can do the same by using the new
constructor:
my $blob = Blob.new(114, 97, 107, 117); say $blob; # OUTPUT: «Blob:0x<72 61 6B 75>» my $buf = Buf.new(114, 97, 107, 117); say $buf; # OUTPUT: «Buf:0x<72 61 6B 75>»
Similarly, you can initialize a buffer to the binary encoding of a string using the from
method:
const buf = Buffer.from('NodeJS & Raku', 'utf-8'); console.log(buf); // OUTPUT: «<Buffer 4e 6f 64 65 4a 53 20 26 20 52 61 6b 75>»
In Raku, you call the encode
method on a string which returns a Blob
:
my $blob = "NodeJS & Raku".encode('utf-8'); say $blob; # OUTPUT: «utf8:0x<4E 6F 64 65 4A 53 20 26 20 52 61 6B 75>»
Note: In Raku, you must encode a character explicitly when passing its blob to a buffer-related method.
To decode a binary encoding of a string, you call the toString
method on the buffer:
const buf = Buffer.from([ 114, 97, 107, 117 ]); console.log(buf.toString('utf-8')); // OUTPUT: «raku»
In Raku, you call the decode
method on the buffer:
my $blob = Blob.new(114, 97, 107, 117); say $blob.decode('utf-8'); # OUTPUT: «raku»
Writing to a buffer§
In NodeJS, you write to a buffer using the write
method:
const buf = Buffer.alloc(16); buf.write('Hello', 0, 'utf-8'); console.log(buf); // OUTPUT: «<Buffer 48 65 6c 6c 6f 00 00 00 00 00 00 00 00 00 00 00>» buf.write(' world!', 5, 'utf-8'); console.log(buf); // OUTPUT: «<Buffer 48 65 6c 6c 6f 20 77 6f 72 6c 64 21 00 00 00 00>»
In Raku, there's not a write
method. However you can use the splice
method to overwrite elements of a buffer with other elements:
my $buf = Buf.allocate(16); $buf.splice(0, 5, 'Hello'.encode('utf-8')); say $buf; # OUTPUT: «Buf:0x<48 65 6C 6C 6F 00 00 00 00 00 00 00 00 00 00 00>» $buf.splice(5, 7, ' world!'.encode('utf-8')); say $buf; # OUTPUT: «Buf:0x<48 65 6C 6C 6F 20 77 6F 72 6C 64 21 00 00 00 00>»
Reading from a buffer§
There are many ways to access data in a buffer, from accessing individual bytes to extracting the entire content to decoding its contents.
const buf = Buffer.from('Hello', 'utf-8'); console.log(buf[0]); // OUTPUT: «72»
In Raku, you can also index bytes of a buffer with []
:
my $blob = 'Hello'.encode('utf-8'); say $blob[0]; # OUTPUT: «72»
In NodeJS the most common way to retrieve all data from a buffer is with the toString
method (assuming the buffer is encoded as text):
const buf = Buffer.from('Hello'); const buf = Buffer.alloc(16); buf.write('Hello world', 0, 'utf-8'); console.log(buf.toString('utf-8')); // OUTPUT: «Hello world!\u0000t»
We can provide an offset and a length to toString
to only read the relevant bytes from the buffer:
console.log(buf.toString('utf-8', 0, 12)); // OUTPUT: «Hello world!»
In Raku, you can do the same using the decode
method:
my $buf = Buf.allocate(16); $buf.splice(0, 12, 'Hello world'.encode('utf-8'));; say $buf.decode('utf-8').raku; # OUTPUT: «Hello world!\0\0\0\0>»
However, you cannot both slice and decode a buffer with decode
. Instead you can use subbuf
to extract the relevant part from the invocant buffer and then decode
the returned buffer:
say $buf.subbuf(0, 12).decode('utf-8').raku; # OUTPUT: «Hello world!>»
More useful methods§
Buffer.isBuffer
§
In NodeJS, you can check if an object is a buffer using the isBuffer
method:
const buf = Buffer.from('hello'); console.log(Buffer.isBuffer(buf)); // OUTPUT: «true»
In Raku, you can smartmatch against either Blob
or Buf
(remember that Buf
composes Blob
):
my $blob = 'hello'.encode(); my $buf = Buf.allocate(4); say $blob ~~ Blob; # OUTPUT: «True» say $blob ~~ Buf; # OUTPUT: «False» say $buf ~~ Buf; # OUTPUT: «True» say $buf ~~ Blob; # OUTPUT: «True»
Buffer.byteLength
§
To check the number of bytes required to encode a string, you can use Buffer.byteLength
:
const camelia = '🦋'; console.log(Buffer.byteLength(camelia)); // OUTPUT: «4»
In Raku, you can use the bytes
method:
my $camelia = '🦋'; say $camelia.encode.bytes; # OUTPUT: «4»
NOTE: The number of bytes isn't the same as the string's length. This is because many characters require more bytes to be encoded than what their lengths let on.
length
§
In NodeJS, you use the length
method to determine how much memory is allocated by a buffer. This is not the same as the size of the buffer's contents.
const buf = Buffer.alloc(16); buf.write('🦋'); console.log(buf.length); // OUTPUT: «16»
In Raku, you can use the elems
method:
my $buf = Buf.allocate(16); $buf.splice(0, '🦋'.encode.bytes, '🦋'.encode('utf-8')); say $buf.elems; # OUTPUT: «16»
copy
§
You use the copy
method to copy the contents of one buffer onto another.
const target = Buffer.alloc(24); const source = Buffer.from('🦋', 'utf-8'); target.write('Happy birthday! ', 'utf-8'); source.copy(target, 16); console.log(target.toString('utf-8', 0, 20)); // OUTPUT: «Happy birthday! 🦋»
There's no copy
method in Raku, however you can use the splice
method for the same result:
my $target = Buf.allocate(24); my $encoded-string = 'Happy birthday! '.encode('utf-8'); $target.splice(0, $encoded-string.bytes, $encoded-string); my $source = '🦋'.encode('utf-8'); $target.splice(16, $source.bytes, $source); say $target.subbuf(0, 20).decode('utf-8'); # OUTPUT: «Happy birthday! 🦋»
slice
§
You can slice a subset of a buffer using the slice
method, which returns a reference to the subset of the memory space. Thus modifying the slice will also modify the original buffer.
// setup const target = Buffer.alloc(24); const source = Buffer.from('🦋', 'utf-8'); target.write('Happy birthday! ', 'utf-8'); source.copy(target, 16); // slicing off buffer const animal = target.slice(16, 20); animal.write('🐪'); console.log(animal.toString('utf-8'); // OUTPUT: «🐪» console.log(target.toString('utf-8', 0, 20)); // OUTPUT: «Happy birthday! 🐪»
Here we sliced off target
and stored the resulting buffer in animal
, which we ultimately modified. This resulted on target
being modified.
In Raku, you can use the subbuf
method:
# setup my $target = Buf.allocate(24); my $encoded-string = 'Happy birthday! '.encode('utf-8'); $target.splice(0, $encoded-string.bytes, $encoded-string); my $source = '🦋'.encode('utf-8'); $target.splice(16, $source.bytes, $source); # slicing off buffer my $animal = $target.subbuf(16, 20); $animal.splice(0, $animal.bytes, '🐪'.encode('utf-8')); say $animal.decode; # OUTPUT: «🐪» say $target.subbuf(0, 20).decode('utf-8'); # OUTPUT: «Happy birthday! 🦋»
However, unlike NodeJS's slice
method, subbuf
returns a brand new buffer. To get a hold of a writable reference to a subset of a buffer, use subbuf-rw
:
# setup my $target = Buf.allocate(24); my $encoded-string = 'Happy birthday! '.encode('utf-8'); $target.splice(0, $encoded-string.bytes, $encoded-string); my $source = '🦋'.encode('utf-8'); $target.splice(16, $source.bytes, $source); # slicing off buffer $target.subbuf-rw(16, 4) = '🐪'.encode('utf-8'); say $target.subbuf(0, 20).decode('utf-8'); # OUTPUT: «Happy birthday! 🐪»
The networking API§
Net§
In Raku, there are two APIs for dealing with networking: IO::Socket::INET
(for synchronous networking), and IO::Socket::Async
(for asynchronous networking).
IO::Socket::INET
currently only supports TCP connections. Its API resembles that of C's socket API. If you're familiar with that, then it won't take long to understand how to use it. For example, here's an echo server that closes the connection after receiving its first message:
my IO::Socket::INET $server .= new: :localhost<localhost>, :localport<8000>, :listen; my IO::Socket::INET $client .= new: :host<localhost>, :port<8000>; $client.print: 'Hello, world!'; my IO::Socket::INET $conn = $server.accept; my Str $msg = $conn.recv; say $msg; # OUTPUT: Hello, world! $conn.print($msg); say $client.recv; # OUTPUT: Hello, world! $conn.close; $client.close; $server.close;
By default, IO::Socket::INET
connections are IPv4 only. To use IPv6 instead, pass :family(PF_INET6)
when constructing a server or a client.
In contrast, IO::Socket::Async
supports both IPv4 and IPv6 without the need to specify which family you wish to use. It also supports UDP sockets. Here's how you would write the same echo server as above asynchronously (note that Supply.tap
is multithreaded; if this is undesirable, use Supply.act
instead:
my $supply = IO::Socket::Async.listen('localhost', 8000); my $server = $supply.tap(-> $conn { $conn.Supply.tap(-> $data { say $data; # OUTPUT: Hello, world! await $conn.print: $data; $conn.close; }) }); my $client = await IO::Socket::Async.connect('localhost', 8000); $client.Supply.tap(-> $data { say $data; # OUTPUT: Hello, world! $client.close; $server.close; }); await $client.print: 'Hello, world!';
The equivalent code in Node.js looks like this:
const net = require('net'); const server = net.createServer(conn => { conn.setEncoding('utf8'); conn.on('data', data => { console.log(data); # OUTPUT: Hello, world! conn.write(data); conn.end(); }); }).listen(8000, 'localhost'); const client = net.createConnection(8000, 'localhost', () => { client.setEncoding('utf8'); client.on('data', data => { console.log(data); # OUTPUT: Hello, world! client.end(); server.close(); }); client.write("Hello, world!"); });
HTTP/HTTPS§
Raku doesn't natively support HTTP/HTTPS. However, CPAN packages such as Cro help fill the gap.
DNS§
Raku does not currently support the majority of the features that Node.js's DNS module implements. IO::Socket::INET
and IO::Socket::Async
can resolve hostnames, but features like resolving DNS records and reverse IP lookups are not implemented yet. There are some modules that are a work in progress, such as Net::DNS::BIND::Manage, that aim to improve DNS support.
Punycode§
Punycode support is available through the Net::LibIDN, Net::LibIDN2, and IDNA::Punycode modules on CPAN.
The filesystem API§
# TBD
Modules and packages§
# TBD